1. Dimensionality of Signals HTE - 12.09.2012

Given a signal set of M signals (waveforms) of s, (t)---sM (t), we wish to find a set of N
orthonormalized basis functions v, (t)---l//N (t), so that we can writes, (t)---SM (l‘)in terms of
/8 (l‘)---l//N (l‘) Note that after this operation of orthogonalization, we can represent s, (Z‘)---SM (l‘)

in an N dimensional space where each (orthogonal) axis corresponds to one of ¥/, (t)---l//N (l) We

chose m and n indexes such that 1<m <M , 1<n <N and it is reasonable to assume that
N<M.

A formal method of finding l//1<t)-~-l//N(t) given Sl(t)“'SM(t> is to use Gram-Schmidt

Orthogonalization Procedure. This is described below in steps

Gram-Schmidt Orthogonalization Procedure

1.  We begin with s, (t)and set I/, (t)as follows

&= jsf (¢) dt (1.2)

This way y/](t)is simply S, (t)with normalized energy, i.e. unity energy. Note that we demand

orthonormalized basis functions l//l(t)--'l//N (l‘) to have unit energy to avoid scaling problems

(similar to Frequency Transforms)

2. Tofind ¥, (t) we proceed as follows. We take s, (t)and find its projection onto ¥, (t) (axis)

from

s, (1) v, (¢)dt (1.3)

N(‘)
I
g 8

Then we subtract C,i/, (t) from s, (t)to get

d, (t)=s, (t)—c,w, (?) (1.4)

Now d, (Z) is orthogonal to ¥, (t)and v, (t)can be found by normalizing its energy, hence
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%@:%?W Q:Z@@m (1.5)

Note that unlike &,, &, does not correspond to the energy in s, (t), but rather it refers to the energy

in d, (t).
3. Ingeneral, the n th orthonormalized basis function is obtained from

d" <l‘) n—1

vl)= o A=zl

5

E =

n

g ——2

d:(t)dt , c,=

g 8

s, (1) w,(t)dt i=1-n—1 (1.6)

4. So, the process in 3. is continued until we reach n =AM, i.e. when all M waveforms are
exhausted.

Example 1.1 : Four signals, waveforms, i.e. , M =4 named as s, (t)---S4 (l‘)are given in Fig. 1.1, we

are asked to find a set of orthonormalized basis functions (t)~--l/lN (t), where N < 4. Before we

tackle the solution, it is important to remind that our signals are defined piecewise over the given
time intervals. This means that mathematical calculations must be made taking into these intervals,

otherwise we will get inaccurate results. To be precise, we give the expressions for s (t)w-s4 (t),

based on the plots in Fig. 1.1a and split into the time intervals they occupy.

1 0<r<1
=1 0% =l <<
0 otherwise 2N .
0 otherwise
-1 0<r<1
(1)=11 1<t<3  5,(1)= 1 0=r=3 (1.7)
S\= - o otherwise ’
0 otherwise
Solution : As described above, first we find (t)
(1)= S\l/g , where & = zsf (t)dt =2, hence y,(t)= Si/? (1.8)
Now we proceed to find ¢,, =0 from
¢y =[5,(t) v (t)dt=0 (1.9)

This is because the overlapping parts of s, (t) and y/, (t) are orthogonal. Then d, (t) =S, (t) and
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1//2(t):d2<t) 5(0)_ %) , since 52:j‘sj(t)dt:2 (1.10)

5 Je 2

To evaluate Y, (l), we need to compute ¢;, and c,, using (1.6), this way

ey=[5,(0) v, (At =0 , c,=[s,(e) y.()dt =—2 (L11)

g =2

Then
d,(1)=s, (t)—cop, (1) = s5,(1)+~2y, (¢) (1.12)

As seen from (1.12), d, (t) is a waveform extending from ¢t =2 to t =3 with unit energy, thus

v, (£)=d, ().

Finally (again using (1.6)), we find that ¢, :\/5 ,¢,=0,c,=1,then

d,(t)=s,(t) =, (1) —cop, (t)—cw, ()= s, ()=, (1) =2y, () =0 (1.13)

As can be verified by plotting d4(t). (1.13) means that we have reached the end of the
orthogonalization process and the waveforms s, (l‘)---S4 (t) can adequately be represented by
orthonormalized basis functions of ¥/, (t)mw3 (Z) So in this example M =4, N =3. For general
M and N, the waveforms s, (t)---S4 (t)can be plotted in an N dimensional signal space, where

any of s (t) in s, (t)---SM (t) can be written in terms of the orthonormalized basis functions of

v, (t)~~-l//N (t) as follows

9
Il

5, ()= 5,0, (1) m=1M | 5,=[5, () w, (£)de (1.14)

(1.14) means s, (l‘) can be constructed from the components § along different (t) . Or
alternatively, we can say that S, coefficients are the projections of (t) along the axis of ¥/, (l‘) In

this manner we define the vectorial representation of s (t) as

S, =[S,15 Spas o S| 75”1 (¢)s,(¢)dt=s,+s, , d, =]s, —sn| (1.15)

The integral in the middle means that the product of two signal waveforms corresponds to the

vectorial inner product. For instance if S (t) and s, (t) are orthogonal, then the inner product will
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be zero. d,refers to the distance between the ends of vectors S, and s , which will be important

from probability of error performance.

Since S, (l‘)and S, refer to the same signal, the energy & in s, (t) can be obtained either from

s, (t) or from s , thus

m?

g :js; (1) dt:ni;sjm —Is.I (1.16)

Note that it is important to comprehend these concepts, since they will be used in the detection
process at receiver.

For the example above, signal vectors §,---S, are shown in Fig. 1.2 in the three dimensional space of

v, (t)---l//3 (t) By using (1.14) and (1.15) it is possible to calculate §,:--S, and their respective

distances as

s =[2,0,0] , s, =[0,42, 0], s,=[0, =2, 1] , 5,=[v2, 0,
dlz:|s1—sz|:[<\/§—0)2+(0—\/§)2+(O—0)2r5:2, d,=[s,—s,|=+5

d,=[s,~s,|=1.d,=s, —s,|=3.d,, =[s,~s,|=V5.d,=|s,~s|=2 (1.1

51(t) sz(t)

s,(t) s,(1)

a) Signal waveforms s, (t)~--s4 (t)
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v,(t)
vy(t)

1732
‘ 1/V2

-1/V2

vy(t)

b) Orthonormal waveforms (basis function) ¥, (t)'--l//3 (t)

Fig. 1.1 Signals waveforms and orthonormalized basis functions for Example 1.1

We do not always have to go to such lengths of finding orthonormalized basis functions by the use of
Gram-Schmidt Orthogonalization Procedure. As an alternative, we can use intuition and eye
inspection to arrive at a set of orthonormalized basis functions. Here the rule is that

orthonormalized basis functions ¥/, (t) v, (t) should satisfy three requirements

1.y, (¢)y, (¢) should be orthogonal amongst themselves, this means
jl//i(f) v (1)dt=0 fori=k,i=1--N, k=1-N (1.18)
2.y, (1), (¢) should have unit energy, this means
j’(//j(z) dt=1, n=1-N (1.19)

3. Yy (t)---l//N (t) should be able to represent (or span) all the signals in the set of
S, (t)---SM (l‘) in an N dimensional signal space, or alternatively we should be able to express all of
the signal in the set of s, (l‘)---SM (l‘)in terms of ¥, (t)'--l//N (t)
So bearing in mind these requirements and particularly paying attention to time slicing in wave forms
of (t)---s4 (t) , we can deduce an alternative set of orthonormalized basis functions of
v, (t)l//; (t), as shown in Fig. 1.3.
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Fig. 1.2 Signal space diagram of signal waveforms s, (t)---s4 (t)in Example 1.1.

vi(t) va(t)

vA(t)

Fig. 1.3 Alternative set of orthonormalized basis functions of ¥/’ (t) W, (t) for Example 1.1.

Exercise 1.1 : Find the representation of the signal set s (l‘)---s4 (l‘)in terms of l//{(t)l//g(l‘)
Compare your new signal space diagram, signal vectors and the distances between their ends to
those results of Y, (t)~-~l,//3 (t) Make your comments by plotting and writing for the relevant

mathematical expressions.

Exercise 1.2 : By using the Matlab file ECE632_GSOrthogonalWaveforms_Expl.m (available on course
webpage), find orthonormalized basis functions v, (t)~--l//N (t) for the signal waveforms given in the

Fig 1.4. Verify your results by hand derivation using Gram-Schmidt Orthogonalization Procedure or by
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eye inspection. Note that number of dimensions N cannot be greater than time slicing along ¢ axis.

Write your s, (t)msM (t) in terms of (t)--'t//N (t), draw the signal space diagram for this case.

Iy s1(t) A SZ(t)
- 2
-1
0 >
1 3
1 4
0 > ¢
-1 -2
A s3(t) A S4(t) 5
1
1
1 2 3 4
0 >
t 0 1 3 .t
4
-1
-2

Fig. 1.4 Signal waveforms s, (l‘)---s4 (t) for Exercise 1.2.

Before we start to investigate different modulation types, it is instructive to show the simplified block
diagram of the modulator we are referring to. This model is shown below in Fig. 1.5. According to this

figure, modulation means taking unmodulated input of binary waveforms in groups of k =log, M

and converting (mostly called mapping) them into modulated output of M ary signals s, (t)~-sM (t)

The way that this modulator functions will correspond to different types of modulations examined
next. Note that apart from the case of M =2, it is always the case that

(symbol duration) 7" > 7, (binary waveform duration).
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Binary s1(t) ..... sM(t)

waveforms Modulator
_Unmod_ulatedr (Mapper) Modulatedr
input with 7 output with

T=Tbxlogz(M)

Fig. 1.5 Simplified block diagram of modulator.

2. Amplitude Shift Keying (ASK) or Pulse Amplitude
Modulation (PAM)

Now we examine different modulation types with the perspective of dimensionality of signal. The
first and the simplest one is ASK (or PAM). In this modulation type, N =1, so we say that ASK is one

dimensional, thus we need a single orthonormalized function l//(t) which is usually drawn as a

horizontal line, where the signal vector are placed according to their respective energies. In this
sense ASK signals will be differentiated by energy differences (essentially amplitude differences) and
their respective orientation to the left (negative pulse) and to the right (positive pulse).

By taking a symbol duration of T, an ASK example of M = 4 is given in Fig. 2.1

s,(t) s,(t)
T r s4(1) s,(t)

I
A 3A

A
-3A
0 t 0 t

v(t)

1T
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Fig. 2.1 An example of ASK signals, orthonormalized basis function and signal space diagram, for
M=4.

By looking at Fig. 2.1 and benefitting from the formulations given in section 1., it is possible to write

the following expressions for signal waveforms s, (t)--~s4 (t), signal vectors 8, :--S, and their

respective energies. This way s, (t) and s, (t) will have greater energies than s, (t) and s, (t)

t)=-34 , s,(t)=—4 , s()=4 , s,(1)=34 , y()=UNT  0<:t<T
. 85,()=—aNTy(t) , s,(t)=aNTy(t) , s,(t)=34Ty (1)
slz[—3Ax/ﬂ , szz[—A\/ﬂ , ssz[A\/ﬂ , s4:[3A\/ﬂ

g=|s| =94T , e =|s=4T, e =|s[=4T, &=|s=94T 2.1)

Mostly to conserve bandwidth and to avoid intersymbol interference that will occur transmission, we

will not use rectangular waveforms, but instead use a shaping waveform called g, (t)
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3. Phase Shift Keying (PSK) and Quadrature Amplitude
Modulation (QAM) — Two Dimensional Signals

To establish two dimensions, it is natural to use two (orthogonal) axes which will be

v, (t) and v, (t) By taking a symbol duration of T, it is possible to generate two types of

orthogonal set of ¥, (t) and y, (t) as illustrated in Fig. 3.1.

A l//1(t) A '//z(t)
Va YA
TI2 T

0 > 0 >

T

- WA
A W:(t) A l//g(t)

v B
0 > O > t

T/2 T/2 T

Fig. 3.1 Two sets orthogonal functions /, (¢) and v, (¢), v (¢) and y; (¢).

We can write the mathematical expressions of y/, (t) and v, (t) s (t) and v, (t) as
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v, (t)=w, for 0<t<T/2,y,(t)=—y, for T/2<t<T,y,(t)=0 for t<Oort>T

w,(t)=y, for 0<t<T , y,(1)=0 for t<Oort>T
wi (t)=y for 0<t<T/2 , y(t)=0 for t<O0ors>T/2
wi(t)=yfor T/2<t<T , y;(t)=0 for t<T/20rt>T (3.1)

It is quite easy to see that
Jw.(t)w,(t)dt=0 ., [w'(t)yi()dt=0 (3.2)

So both ¥y, (t) and v, (t) and v (t) and v, (t) are orthogonal amoung themselves. Note that
788 (t) and (t) achieves orthogonolization by nonoverlapping along time axis, while

w,(¢) and y, (¢) are overlapping. To establish that , () and w, (¢) and v (¢) and y; (¢)are

orthonormalized as well, we demand that energies are unity such that

zl//f(t)dtzl , zl//22<l‘)dl‘:1 : j[wf(t)r =1, j[wj(t)]z dt=1 (3.3)

—00 —00

o 1 “_ |2
From the evaluations in (3.2), we get i/, :ﬁ and v = T So now (t) and v, (t) and

v, (t) and y; (t) are both orthogonal and orthonormalized.

Now we choose two time signal waveforms s, (t) and s, (t), similar to y, (t) and y, (t) as

displayed in Fig. 3.2.

A S1(t) A sz(t)

T/2 T

Fig. 3.2 Two time signal waveforms s, (t) and s, (t)
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If y/ (t) and y; (t) are selected to represent s, (t) and s, (t), then it is possible to write

S, (t) and s, (t) in terms of the orthonormalized basis functions ;' (t) and (t) as

S (t):Afor 0<t<T /2,5, (t):—A for T/2§t§T,sl(t):O for t<Oort>T
s,(t)=Afor 0<t<T , s,(t)=0 for r<O0ort>T

(1)=4 \f] A\/zj(t)forOStST,s](t):O for t<Oor¢>T
= \/7, +A\/72 for 0<t<T ,s,(t)=0 for r<Oort>T
5 5] n bl A

Note that on the first two lines of (3.4), we have intentionally written for s, (t) and s, (t)as they are

(3.4)

1 ll’ s = 219 22

seen from s, (¢) and s, () (without y (¢) and ; (¢)). On the third and fourth lines of (3.4), where
there are the expressions of s, (t) and s, (t) in terms of (t) and v/, (t), we do not actually need
the time range specifications given at the end of lines, since these time ranges are readily built into
v, (t) and y; (t) On the last line of (3.4) we have the vectorial representation of s, (t) and s, (t),
ie. s = [SH, slz] ands, = [521, szz] whose vectorial coefficients can be calculated either using the

integral in (1.13) or by eye inspection. With these vectorial coefficients, it is now possible to
construct the signal space diagram as shown in Fig. 3.3.

vA( 1)

s
SzzL/A'T 2

X +S“ . VA(t)
4 s I

Fig. 3.3 Signal space diagram for s, (t) and s, (t) of Fig. 3.2.

As seen from Fig. 3.3. the two signal vectors are placed at 90" with respect to each other which is not

surprising since sl(t) andsz(t) are orthogonal to each other. Additionally the angles

s, (t) and s, (l‘) make with (t) is 45°, since |s“|:|sl2|: ANT 12 |s21|:|522|: ANT /2 .
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Furthermore, the energies in s, (t) and s, (t) can be calculated from the lengths of s, and s, as well

as from the time waveforms as shown in (3.5). Of course in both cases we arrive at identical results.

g =|s| =5 +si= jsf (t)dt=A'T

—00

b=l =sitsh= [ ()di= AT, 5,=5,=2 (3.5)

Exercise 3.1 : Find s, (t) and s, (t) in terms of y, (t) and y, (t), draw the related signal space

diagram, signal vectors, energies and compare your results with the case of (t) and y; (t)and

comment on them.

S, (t) and s, (t) time waveforms of Fig. 3.2 and the associated signal space diagram in Fig. 3.3.
constitute what is called PSK, since here the energies of signals (thus the length of signal vectors) are

the same (denoted commonly as &) and the only differentiating factor is the respective angular

location corresponding to phases in s, (t) and s, (t) Looking at Fig. 3.3, we see that the two
dimensional signal space is not used efficiently and we can place two more signals, namely

s, (¢) and s, (¢) such that s, ()= —s,(¢) and s, (t) = —s, (¢), hence the vectors s, and s, will have
a rotation of 180° with respect to s, ands, . The new signal space diagram comprising

S,,S,, s, ands, is given in Fig. 3.4. Note that here we have reverted from i/’ (t) and v, (t) to

w,(¢) and y, (¢).

A '//2( t)

> V/1(t)

Ul

~—

Fig. 3.4 Signal space diagram for 4 PSK signals s, (t)---s4 (t .

In Fig. 3.4, M = 4 (corresponding to 4 level signaling), this PSK scheme is also known as quadrature
PSK. In the signal space diagram of Fig. 3.3, we had M = 2 (binary). Since in PSK, all signal vectors
are of same length (and same energies), it is customary to draw a circle passing through signal end
points as indicated in Fig. 3.4. It is of course possible to add more signals to the two dimensional
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signal space of PSK. For instance, the case of M = 8is shown in Fig. 3.5 where we have removed the
connections of signal vector ends to the origin for clarity. It is also possible to go to higher M values.
This way, the appearance in the signal space diagrams will turn more into a constellation of stars. For
this reason, signal space diagram is also called constellation diagram. For a general M , the mth

signal waveform s (t) and signal vector S, from the signal set of s (t>~~~sm (l‘)"-SM (l) can be

formulated as
s, ()= ANT[Cw, (1) + Cy, (¢)] , C =cos[2z(m—1)/M] , C, =sin[2z(m—1)/ M|
v, (1) v, (1)

s, ={ANT cos[2z(m—1)/ M| , AT sin[ 27 (m~1)/ M} , m=1--M (3.6)

_|N2/T for 0<t<T/2
0 elsewhere

_N2/T for T/2<t<T

0 elsewhere

Note that the orthonormalized basis functions defined in (3.6) are the same as ¥ (t) and y; (t) of
Fig. 3.1.

S, , Yo(t)

v, (t)

Fig. 3.5 Signal space diagram for 8 PSK signals s, (l)--~s8 (t) .

Exercise 3.2 : From (3.6) write for the time signals of s, (t)---s8 (t) , signal vectors of §,:--S;and see if
they agree with the signal constellation of Fig. 3.5. Find the length and the energies of the signal

vectors S, ---S,.

An interesting feature of PSK (and also QAM) constellation is that positions of signal vectors can also
be represented on a complex plane, since a complex plane is two dimensional as well. With this

arrangement, ¥/, (t) will be replaced by the real part of the complex exponential and ¥/, (t) will be

replaced by the imaginary part of the same exponential. Thus the signal vector 8, of M ary PSK will

become
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s, = {ANT exp[2zj(m—1)/ M|} | m=1--M (3.7)

It is worthwhile to note that Matlab uses the notation expressed in (3.7).

It is easy to see that even with increasing M , the two dimensional signal space is still not efficiently
used. One solution would be to create energy variations as well as phase variations in signal vectors,
this way achieve a combination of ASK plus PSK. This combination will be called Quadrature
Amplitude Modulation (QAM). An example of 16 QAM is shown in Fig. 3.6. As seen here, QAM
constellations are usually arranged in the form of rectangles, although from probability of error view
point, this is not the best placement of signal vectors, there is little difference between the
rectangular arrangements and the optimum ones. Fig. 3.6 proves that QAM is indeed a combination
of ASK and PSK. For instance, in the given constellation of Fig. 3.6, the collection of signal vectors

S., S, S, and s, constitute 4 ASK, whereas the collection §,, S, S,, and s . represents 4 PSK. It is

equally possible to identify other similar groupings.

A 1/12( t) 4 ASK
S_, SG s ‘ sz
e e g3 — — 4 ASK
s s 4 PSK
8 5 — | —
o s %4 l S

s | ; )
", \ S5 l Si4
. S0 T+ - ‘
12 . . 59 . 4
S16 S13

Fig. 3.6 Rectangular signal constellation for 16 QAM signals.

Arrangements other than the rectangular type are also possible in QAM. For instance placing of
signal vectors on different circles within each other is another option as illustrated in Fig. 3.7. Of
course, the objective here is to find the constellation (distribution of signal vectors) that will give the
maximum distances between vector ends for the same total or average energy, since it this criteria
which will determine the probability of error performance.

HTE Eyltl 2012 Sayfa 15



Fig. 3.7 Circular signal constellation for 8 QAM signals.

In practice QAM is used mostly in radio links.

4. Multidimensional Signals

With the context of multidimensional signals, here we will only study Frequency Shift Keying (FSK).
Although the other modulation types can be represented both in baseband (without carrier) and
bandpass (with carriers), FSK can only be written in terms of sinusoidal carriers. Assume that we

choose M = 2 and assign frequencies ﬁ elndf2 to our message signals of s, (t) and s, (t), then

2 . .
s, (t)= 5 cos(2zft) , 0<¢<T, , T,: Binary waveform duration

b

Tj T,
s, (t)= 2Tg,, cos(2zfit) , 0<t<T, , &= [s(t)dt= [s(t)adt 4.1)
b 0 0

Note that in the writing of signal waveforms, we have used slightly different notation than ASK and
PSK. By setting Af = f, — f. ,, adopting a starting frequency of f. such that f, = f. +(m—1)Af

we can write for the m th signal as follows

s, (t)= /2? cos[27zﬁt+27z'Af(m—1)t] , 0<¢<T

T
fs2 (t)dt =ke, =g, log,M , m=1--M , T=KT, 4.2)
0

SX

m

It is interesting to examine the variation of Af (frequency separation) against T’ (symbol duration).

To this end we define the correlation coefficient }, as follows
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S

m

2¢,

00|27 £t 4 278f (m—1)1] cos| 27 [+ 27Af (n—1)1] dt

°0|»—ah°"|'—‘

Rl
-]

©

:?fcos[27zjf_t+27zAf(m—n)t] dt-l—%]cos[bzfct-l-bmf(m+n—2)t] dt

~ sin[Z;rAf(m—n)T]
- ZﬁAf(m—n)T

(4.3)

where on the second line, we have substitutions from (4.1) and the approximation on the line is due

to fc >1/T. A plot of 7., against Af is given in Fig. 4.1. As seen from this figure, ¥, passes
through zero at integer multiples of 1/27 . It means at this values of Af’, the signals s, (¢)and s, (7)

are orthogonal. The minimum value of y, is —0.217 and reached at Af =0.715/T . These

markings are important and form the basis of Orthogonal Frequency Division Multiplexing (OFDM).

FSK correlation coefficient

7m n

Fig. 4.1 The variation of FSK correlation coefficient ¥, against Af .

Exercise 4.1 : Write the mathematical expressions for FSK time signals and signal vectors for M =8§.

5. Detection of Signal in Presence of Additive White
Gaussian Noise — Correlators and Matched Filters

We assume that within a time interval of 0 <¢ <T, our transmitter randomly sends one of the

S, (t)---SM (t)signals, namely s (t) and in the communication channel, only additive white Gaussian

noise (AWGN) is added to the signal, so that the received signal r(t) is
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r(t)=s, (t)+n(t) . Sn(f)ZTOZU: (5.1)

where S| (f) is known as noise spectral density function, NO and O'f are noise spectral density level

and noise variance. It is obvious that S, (f) is independent of frequency f, hence the White nature

of Gaussian noise.

Such a channel model is known as (band unlimited) AWGN channel and depicted in Fig. 5.1. It is clear
that in this channel, there is no band limitation, which means that

C(f)=1,c(t)=65(t), &(¢) : Time delta function (5.2)

Comunication channel
Transmited C(f), (1) o
signal Received signal

s (1) N r(t)=s_(t)+n(t)

Transnm tter

. Receiver side
side

Noise , n(t)

Fig. 5.1 AWGN channel model.

The receiver has a knowledge of modulation type and symbol duration, T that are employed at the
transmitter. Furthermore the receiver also knows the set of signals s, (t)---sM (t), i.e. the alphabet

used by the transmitter. Finally we assume that the receiver is able to extract the beginning of time
interval 0 <¢ <T, called synchronization. So the job of the receiver is to demodulate the incoming

signal r(t) and decide correctly which s (t) was sent from the transmitter within the time interval

0 <t <T. Note that since we are dealing with an unlimited channel, it is sufficient to consider any
symbol interval. Here we choose, the interval, 0 <7 <T. To perform demodulation tasks, we pass

the received signal through a correlator as shown in Fig. 5.2. Basically the operations performed in
the correlator of Fig. 5.2 are feeding the received signal simultaneously to N branches, multiplying

the received signal r(t) on each branch by one of the orthonormal basis functions /, (t)--~l//N (t)
(the same ones used at transmitter to construct the signal s, (t) ), integrating the resultant over one

symbol duration, and sampling at the end of this duration, forming the vector array r by collecting
the individual components 7, ---7, , eventually sending r to a detector to decide which s (t) was

sent from the transmitter. The operations carried out on the n th branch of this correlator can
mathematically be described as
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=[5, ) w,()dt , n,= [n(t) w,(t)dt (5.3)

Note that the definition of S is equivalent to the one in (1.13).

mn

w, ()
o
(X ] [ i . -
R ol I -
e (] i =
w, LE) : Ej
k - ! rz
—Q{;\_—b ||( vt el ——/':' [ é
Received signal g A ! g
i r —
- i =
- ! -
= : : 2
s () e | £
s (D +a(t) i b : -]
| o =
——ka I|I'"_ Al (2 "r' & -
_—— v ! i
SSaArmp &
ait=T
Fig. 5.2 Correlator type of demodulator.
Considering all branches in the correlator of Fig. 5.2, we get
r=s, -+n (5.4)

(5.4) means the totality of the operations in the correlator can be treated as row arrays of

r, s, and n, where

n=[n-n-n,| (5.5)

n TN > m m mn.“SmN s

It is important to point out that S, is deterministic in the sense that it will take upon one of the
values from the set S :--S, , while nis random. The probability density function (pdf) for the

amplitude distribution of one 7, sample of nis the same as input noise, hence

1 2
f(nn)zwexp[—;—:] , N0:2(75 , n:lN (56)

where N, /2 is the noise spectral density and o is the variance. All 71, samples have zero mean

and are uncorrelated, which means
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S(t—7) w,(t)y, (r)dt
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) |02

ot
S
S
=
&

I
oz o]z S e

o o =0ifn=m , 6 =1if n=m (5.7)

mn mn

As a consequence of (5.5) and (5.6)

N 1 N o2
f(n>zﬂf<”n)—(ﬂN >N/2 eXP[—ZZ;
0 n=l LV,
E[r’l]:E[Smn+nn]:E[Sm"]_'_E[nn]:Smn+0:Smn
fr Sm)Zﬁf(r,, Sw) . m=l-M
1
e S VA R
0
2
1 X n - mn
f(r|s’"):( 0>N/2 cXp _;<r N: )
2
1 r—s
:<7Z_NO)N/2 exp—” Nom” 5 m=1---M (58)

The development in (5.8) means that (vectorwise) when noise n is added to the incoming signal s, ,

then the received signal r becomes a Gaussian random variable as well. This way the received signal

inherits all properties of noise, except that the previous zero mean is now shifted to § . In a way,
this is like adding a DC shift (S, ) to an AC signal n. Note that in (5.5) noise vector nis shown to be
N dimensional. This is because the correlator of Fig. 5.2 takes the projections of noise signal n(t)

onto an N dimensional space. Prior to such an operation, noise signal n(l‘) (i.e. the noise in nature)

has infinite number of dimensions.

It is also possible to perform the demodulation via match filter type of demodulator. This is shown in
Fig. 5.3. As seen in Fig. 5.3, the previous acts of multiplying the received signal by orthonormal basis
functions and the integrating the resulting product are concentrated in the boxes known as matched
filters (MFs). This can be proven mathematically by writing the output from MF n th branch on the as
follows.
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v (6)= [r(c) b (1—7) dr
0
:]r(r) w,(T—t+7)dr , n=1-N (5.9)
0
After sampling at t =7, we obtain
yn(T):]r(T) l//n(T) dt , n=1-N (5.10)

0

(5.10) will deliver the same result as the first line of the integral in (5.3).

Matched Filters (MFs)

vty '
o A *"‘T’

PO -
1 fm) )
i =
1 "
= :
]
TSI B £
o Lol — a0 | O— W
Raceived signal I i
A g i r — 4
» ! %
TOE . |
| | g
bm{{ﬁn(ij i . L
v i N
o Aol — T L i ‘7’5 *
1
Zamipds
ari= 1

Fig. 5.3 Matched Filter (MF) type of demodulator.

It is instructive to examine the time domain properties of MF. The impulse response of a filter
matched to an input signal of S(t) is given by h(t) = S(T—t). Then the response from such a filter

would be

t t

y(t):fs(r)h(t—r) a’r:fs(r)s(T—t—i—r) dr (5.11)

0 0

So the output from the matched filter can be interpreted as the time autocorrelation function of the
input signal S(t) . An example input and output of MF are given in Fig. 5.4. As seen from Fig. 5.4c, the

match filter response inside the convolution integral becomes oriented in the same direction as the
input so that maximum similarity (correlation) is established at the output at the instance of t =T .
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Input Matched Filter ( MF ) output

s(t), S(f) H(f), h(t) y(t), Y(F)

a) Block diagram of matched filter (MF)

h(t)=s(T-t ple-7)
s s-n Q0TS0 msTten)
A — A
t
>t 0 > { > T
T T T t-T Of ¢

b) Orientation of input signal to matched filter (MF)

“S(Z')
— A
Sample area of overlap
} ] when T <t<2T
0 | — T .
s(T-t+7) 4 T<t<2T t>2T p
A _
t<0 O<t<T‘,/ / \
/ /
| .7
t-T t t-T 0t t-T t t-T t
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c) Output from matched filter (MF) via convolution

Fig. 5.4 Block diagram, orientation of input signal and obtaining output signal from MF via
convolution.

To find the output of MF for the input given in Fig. 5.4, we need the mathematical expressions of

S(Z‘) and s(T—t-i-Z') as seen for the integration in (5.11). These are

—T

qﬂ:A%-,sU—r+ﬂ:—A +4 (5.12)

Again looking at Fig. 5.4 c), we identify four different regions of integration for the expression of
(5.11) which are

’yl(t>:0 t<0
yz(f):]S(T)S(T—“rf)df 0<t<T

»()= : (5.13)
ys<t):fS(T)S(T—t+T)dr T <t<2T
,(t)=0 t>2T

Note that on the first and last lines of (5.13), the result is zero because the is no overlap between
S(T) ands(T—t—H'), while on the second and third lines, the integrand is the same as expected,

but the integration limits are adjusted according to the areas of overlap. After using (5.12) in (5.13),
we get

v, (t)=0 t<0
2.3 2,2

yz(t):—At2+At 0<t<T
B 6> 2T

2= A £t SAT G419

3

yS(t):6T2 (t-T) ——t T<t<2T

¥, (1)=0 t>2T

For the results (meaning the second and third lines) in (5.14), the tests conducted at the check points
t=0, t=T and t = 2T are given in (5.15). Note that these tests, of course, do not guarantee the

absolute correctness of the formulations given for y, (t) and y, (t) in (5.14). We show the plot of

y(t) inFig. 5.5.
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) 3 2l A\
yz(t:O)z—A(t_ZO> +A<t_0) =0 Test for £ = 0: OK
6T 2T
2 _ 3 2 _ 2 2 T
yz(t:T):—A (é;m —I—A (;;T) :A3T:j01s2(t)dt:£x Test fort=T:0K
2 2 (4 — 2 2
y(t=T)= Az(t:T—T)3—A (t_T>+5AT:AT:gS Test for 1 =T:0K
6T 2 6 3
2 2 — 2 2
y,(t=2T)= Az(t:2T—T)3—A (t_2T)+5AT:AT:0 Test for t = 2T : OK
6T 2 6 3
(5.15)
0)
3N
QBN |
Q2 N\ 1
Byt N
Q1 yt) .
Q® S N

4

251

Fig. 5.5 The output from MF, when the input is as shown in Fig. 5.4.

As seen from Fig. 5.5, the peak of y(l‘) occurs at t =1T'. This explains also why we have chosen the

sampling instance ¢t =T for correlator in Fig. 5.2 and matched filter in Fig. 5.3. It is important to note

that the output of MF comes out to be in units of energy, whereas we expect it to be in units of

voltage (or current). To correct this, we have to divide the output of MF by the square root of energy

of input.

Finally we examine the frequency domain interpretation of MF. To this end we assume that for a

signal of S(t) the time response of matched filter is given by h(t):S(T—t), thus the Fourier

transform of S(T—t) will be
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%q

H(f): S(T—t) exp(—ZjEﬁ) dt
s(z) exp(2jzft) dr|exp(—2,7fT)

— 8" (f)exp(—2j7/T) (5.16)

I
o%\] i

The last line in (5.16) means that the frequency response of MF is equal to the multiplication of the

complex conjugate of the frequency response of the input signal and phase factor eXp(—ZjirfT) ,

representing the time delay of T in S(T—t) . The output from MF in will then be

y(t):zY(f) exp(2j fi) df

= f‘S(f)r exp (=27 fT)exp(2)jx ft) df

y(e=1)=JIs(s)

zdf:jsz(t) dt=¢, (5.17)

where on the last line we have taken into account the sampling at the instance of t =7 . Then we
have used Perseval’s relation to establish the energy equivalence of a (time limited) signal along time
and frequency axis. Since it is a bit awkward to find the output of MF in units of energy, usually we
scale the response of MF by the square root of energy. Note that such a scaling is already accounted

for in the orthonormalized functions of /, (t)---l//N (t)

The last line of (5.17) gives the signal output as amplitude, thus its square will give the output power,
that is

P=)y(T)=¢ (5.18)
The noise with a spectral density of S (f) = N, /2, when fed to an MF whose frequency response
is H(f) =5 (f)exp(—ZjﬂjT) will deliver spectral density output of
S,(N)=|H (]S, (F)=[s(A) N, /2 (5.19)
As a result, nose power at the output of MF will be

eN,
2

p=[s,(r)ar =22 [Is(r)] &= -20)

By using (5.18) and (5.20), we can calculate the signal to noise ratio (SNR) at the output as follows

2
sR_P_ &2
P &N, /2 N

0

(5.21)
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6. Optimum Detector

By optimum detector, we mean a detector that makes best use of the received (statistical)
information and establishes a correct decision as far as possible. As seen from Figs. 5.2 and 5.3, the

received to be used by the optimum detector is r:[rl;m; rN] . From (5.8), we know that ris a
Gaussian random variable (a property inherited from noise) with a mean of s, (a property inherited
from the transmitted signal). Vectorwise r =s +n. So if the possible number of transmitted
signals was M =4 and the dimensionality of the signal space was N = 3, then the appearance of
the signal space diagram would be something like that shown in Fig. 6.1 assuming s, (t) was

transmitted. Here the cloud around each signalling point represents the spherical (since N =3)
noise observed after may receptions. At a given instance of time received vector r would be as
shown.

 v(1)
S,
2
Noise cloud — s1 -

° A n

\\ J /3

L
_ . v(0)
-— —

ya( 1)

Fig. 6.1 The appearance of signal space after AWGN channel.

Now we aim for an optimum detector that will make a decision based on the computation of the
posterior probability defined as

P(signal s, was transmitted|r> = P<sm |r) (6.1)
Our criteria will be to find mvalue that will maximize P(sm |r) , when mranges inm=1---M .
Upon finding the m value that has maximized P(sm |r) , We arrive at the decision that it is most likely

that this particular s, was transmitter. So our optimum decision rule boils down to evaluating

P(sm |r> and is named as maximum a posteriori probability (MAP) criterion.
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Using Bayes rule, we can express P(sm |r) as

r) f<r |sm)P(sm)

— 6.2
f(r) ©2

m

P<s

where f(r |sm) is the conditional pdf of r given that s was transmitted. P(sm) is the probability

that signal s, was transmitted.f(r) in the denominator of (6.2) is the pdf vector r and will be given

by the following sum

Fr)=37(rls,)P(s,) 63)

m=1

We can take the formulation of f(r |sm)from (5.8), but even then, it is not possible to arrive at a

simplified expression of P(sm |r) , since individual probability of signal sent from the transmitter may

be different. If however the transmitter sends all s, signals, m =1--- M with equal probability, then

(6.4)

As aresult

s, )| (6.5)

The reason that we have been able to write the last expression in (6.5) is that the sum in the
denominator of the middle expression remains the same whichever mis selected. Therefore this

sum has no role in the determination of MaX[P(sm |r)] . So finding MaX{P(s

)} is equivalent to
finding Max[f(r |sm)], such a reduced decision strategy is called maximum likelyhood (ML)

criterion. From (5.8) we see that f(r |sm> contains a Gaussian exponential, thus it may be easier to

work with the log, (denoted by In), hence

S —s,) (6.6)

Max {ln{f<1’ | S, )]} = Max NL po

%ln (ZN,)—

We note that terms that do not contain the index m are irrelevant in the maximizing process,

therefore, we take the last term in (6.6) and set it to a distance metrics, D( r, sm>

D(r,s,)=>(r, —s,,) (6.7)
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Because of the minus sign in front of the sum in (6.6), seeking Max[P(sm |r)] will now be equivalent

to Min[D( r, s)] . As the name implies and as also detected from (6.6), when the index 7 is run

from 1 to M , the distance metricsD( r, sm) will calculate one by one the distances of all signals
that are likely to be sent from the transmitter to the received vector r. In the end by selecting
Min [D( r, s]), D( r, sz), D( r,s, )], we shall have arrived at the optimum decision based on

MAP criterion. Such an operation is carried out for the sample constellation of Fig. 6.1 and illustrated
in Fig. 6.2.

 v(1)
SZ S
Noise cloud — 1 . n
.‘\x N D(r,s,)=Mn[D(r,s_)]
D(,s,) \ ~~ r
— - ¥(1)
*-— \ D(r,s4)
s, AN
S4

ALY

Fig. 6.2 Calculation of distance metrics for the sample constellation of Fig. 6.1.

As clearly seen from Fig. 6.2, this operation will definitely to the correct decision, so long as the noise

n added to §, (remember that we have already assumed that s, (t) was sent from the transmitter) is

at the amplitude and angle as shown.

Expanding (6.7), we get

N N N
D(r,s,)=>2r =23 15, +35,,
n=l1 n=1 n=l1

2

r||2 —2r-s, +

S
m

D'(r,s,)=-2rs, +[s,[ . C(rs,)=2rs, —|s,| (6.8)

On the second line of (6.8), we have reverted to vectorial notation, on the third line in the definition

2 . . . . . .
of D( r, sm), we have dropped ||r , since it is common to all calculations of distance metrics, hence

no effect on the result, thus have defined a new function called D ( r, sm). Finally on the third line

of (6.8) we have introduced correlation metrics C( r, sm) which is the negative D”( r, sm) . Since in
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the search ofMax[P(sm |r>] , we opted to seek Min[D( r,s, )] and C( r, sm) is opposite sign to

D( r, sm) and consequently D"( r, sm), searching for Max[P(sm |r)} (i.e. applying the rule of
MAP criterion) must be equivalent to

Max[P(sm |r>] =Min|D(r,s,)|=Min[D*(r,s,)|=Max|C(r,s,)] (6.9)
(6.9) means that our optimum detection rule is simply finding the distances between the received
vector r and all possible signals transmitted, s, ---s,, and deciding on 8 _which gives the minimum
distance, i.e. Min[D“( r,s, )] or finding the correlation between the received vector r and all
possible signals transmitted , s, ---s,, and deciding on the one which gives the maximum correlation,

i.e. MaX[C(r s )]

> m

The above development is valid for the situation when all signals are sent from transmitter with
equal probability. If this is not the case, then we go back to (6.2) and (6.3) and keep in mind that the

pdf function f(r)is a sum that remains constant whichever m is chosen, thus has no effect on

maximization process. Under these circumstances, MaX[P(sm |r)] will become

Max [P(sm

r)]EMax[f(r |sm)P(sm>] (6.10)

It is clear that by the application of D ( r, sm) or C( r, sm)we start to define an area of (correct)
decision region for the signal s (t) which we denote by R . Then, the probability of error P, (sm)
for the signal s, will be given by the integration of f(r |sm> over the entire area excluding the one

belonging to R . This area is denoted by R’ . Then
= [f(r]s,)dr (6.11)
3

The average probability of error over the total of M signals will be

P=gr R R ) =5 R (e ) dr
— LS [ f(r]s,) ar (6.12)

In case the signals s, ---§,, are not sent with equal probability, i.e. if MAP criterion is valid, (6.12)

turns into

P=1-3P(s,) [ f(r]s,)dr (6.13)

m=1
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Now we solve two lengthy examples to illustrate the above points.
Example 6.1 : Consider an ASK system where M = 2 and the transmitter uses the signal set and the
basis function, s, (¢), s, (¢) and w (¢) shown in Fig. 6.3a. s,(¢) and s, (¢) are transmitted with

unequal  probabilites of pandl—p respectively. Determine the metrics, i.e.,

Max[P(sm

r)} = Max[f(r |sm>P(sm )} for the MAP optimum detector.

y s,(t) 4 s,(t) \ V(t)

A -1/\/Tb

a) Transmitted signal waveforms, the basis function

g
MF | z
Recaived signal _ ¥ i r £
() =w(Th 1) | el §
0= | ;
s (t)-n(t) ! E
. Sample |E
a E=T.,J

b) Block diagram of MF demodulator

Fig. 6.3 Transmitted signal waveforms, the basis function and the block diagram of MF demodulator
for Example 6.1.

Solution : In Fig. 6.2b, the demodulator at the receiver side is shown as matched filter (MF).

Accordingly, for the cases of s, (t) and s, (t), y(t) after MF becomes the following
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r(t) w(T,—t+7)dr
s,(7) w(T,—t+7) dr—l—j:n(r) w(T,—t+7)dr
r(t) w(T,—t+7) dr

s, (7) w(T,—t+7) dr+]n(r) w(T,—t+7) dr (6.14)

NS
=
|
o%‘ﬂ

h s,(7) w(7) a’r+Zn(r) () de = AT, +n(T,)=\[¢, +n(T)
5:(2) w(e) dr+ [ n(e) v () de = AT, +n(T) =3 +(7)
n(e) w(e) de gb:Zsf(t)dt:Zsj(t)dt:Azﬂ 6.15)

n(ﬂ) is the noise sample that has the same characteristics of n(t)in the received signal. Thus
n(ﬂ) is Gaussian with zero mean and variance 6: =N, /2. From (5.8) and (6.15), we work out the

individual f(r |51> andf(r |sz) as

f(r |s1): (ﬂN())OS exp —(r —@)2/N0]
£lr|s)= ENIO)OSexp ~(r +\/g)2/NO} (6.16)

m

For a detection strategy based on finding Max[P(sm |r)] = Max{f(r |sm)P<s )] , we simply decide

as follows

If f(r sl)P s

|
If f(r |S1)P

(s,)> f(r|s,)P(s,) then decides, () was transmitted
(s,)<f(r|s,)P(s,) then decides, () was transmitted (6.17)

1

Substituting from (6.16) into (6.17)

If r> N, ln[l_p ] then decide s, (¢) was transmitted

4\/57 p

If r< N, 1n[1_

4\/5—b p

S

] then decide s, (1) was transmitted (6.18)
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So our decision requires a knowledge of N, ¢, and p. It is quite possible that the transmitter sends
information about the last two parameters, but N has to be measured somehow. Note that if
p =0.5, meaning that s, (t) and s, (t) are sent with equal probabilities from the transmitter then

then the decision rule of (6.18) will become independent of the parameters as shown below.

If >0 then decides, (r) was transmitted
If r<O0 thendecides, (r) was transmitted (6.19)

Example 6.2 : Give at least two different sets of time waveforms, s, (l)~~~s4 (t) for 4 PSK. For these
waveforms, find appropriate orthonormalized basis functions, find the representation of
S, (l‘)---S4 (t) in terms of orthonormalized basis functions, find s, ---s, vectors, the distances between

vector ends, draw constellation diagram and the diagram of demodulator comprising correlator and
matched filter. Show that distance and correlation metrics function properly (i.e. give the correct

decision) if s, (t) was sent from the transmitter and no noise is mixed with the signal at receiver. Give

correct decision boundaries and find probability of error if all signals are sent from transmitter with
equal probability.

Solution : Two possible sets of s, (t)---s4 (t) and v, (t), v, (t) are given in Figs. 6.4 and 6.5

4 s (t) As(t s.(t
1 o s,(t) e | 3( 1) 4} s,(t)
T/2 T/2 T
0 >t O » t O » t > t
TI2 T/2 T 0
-AV2 -AN2
v, (t) v, (t)
A A
N2/ T N2/ T
0 > f 0 > t
T/2 T/2 T

Fig. 6.4 First possible set of signal waveforms, s, (t)---s4 (t) and orthonormalized basis functions,

w, (1), w,(t) for 4 PSK.
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4 si(t) i $ sit) ., 4 si(t) $ si(t) |
0 T 0 T T/2
>t >t ot >t
0 T TI2 0 T
v ? ’
(t)
" A
AINT AINT
T
0 > 0 >t
T TI2
CANT

a

Fig. 6.5 First possible set of signal waveforms, s (t)~~s4 (t) and orthonormalized basis functions,

w! (¢), i (t) for 4 PSK.

Note that signal waveforms and orthonormalized basis functions in Figs. 6.4 and 6.5 are
interchangeable. Here we continue our solution with the set shown Fig. 6.4. Initially we write the

time waveform expressions for s, (t)--~s4(t) and v, (t), v, (t)

A2 0<t<T/2
S, (t) = ]

0 otherwise

A2 0<t<T/2
S3 (l‘) — ]

0 otherwise

N2/T 0<t<T/2
v, (t)= .

0 otherwise

A2
0

T/2<t<T
otherwise
T/2<t<T
otherwise
T/2<t<T

‘ (6.20)
otherwise

Now either by eye inspection or by Gram-Schmidt Orthogonalization Procedure, we write

S, (l)--'S4 (t) in terms of y, (t) and y, (l) Note that here there is no need to indicate the time

intervals, since they are embedded in ¥/, <t) and v, (t)

5, (t>:Aﬁ‘//1 (t> ’ SZ(t):Aﬁl//z(t> ’ S3<t):_A\/?‘//l(t) ’ S4(t>:_Aﬁ'//2(t>

7]

=85 s,z]:[A\/i 0} .S, =18, szz]:[O, A\/ﬂ

s, =[s,,, sn]:[—Aﬁ, O] . S, =[S, s42]:[0, —A\/ﬂ
d,=d,=d,=A2T =\2¢ ,d,=d, =24T =2,fz,
s|=[s,|=s,|=[s.| = AVT , 6,=¢, =6, =6, =6 = AT (6.21)

On the second and third lines of (6.21), we have included the vectorial representation of our signals,
on the fourth line we have given the respective distance between vector ends, on the last line the
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length of vectors and the energies are given which can be calculated either from time signals or
vectorial representations. As this is PSK, all vector lengths, thus the energies are equal. Now we can

plot the constellation diagram of §, ---s,. This is illustrated in Fig. 6.6

v, (t)

Fig. 6.6 Constellation diagram for the 4 PSK in Example 6.2.

Below, we show the block diagrams of correlator and matched filter type of demodulators.

w () ,
i
i - v, |
] 1 ! r
. . 1
il | £
: =2
Raceived ! =
signal II E
" . " i r — E
rit)= ) ! o
Wi : 5
s_(th+a(t) '__{W ” ¥ m_, fa %
—.( W - j riF e ()t P s
e bl ' ' ' =
Sample
att=T

a) Block diagram of correlator type of demodulator.
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b) Block diagram of matched filter type of demodulator.

Fig. 6. 7 Block diagrams of correlator and matched filter type of demodulators for the 4 PSK in
Example 6.2.

We first tackle the case of the correlator and assume that s, (t) was sent from the transmitter

— :j:‘r(t> vt de= [5.0) .0 dt+zn(t) v, (¢) de

=0+n, , n, fn(t) w,(t)dt , r=[n;n] (6.22)

0

The reason that we have arranged vector r in the form of a column vector rather than a row vector,
is because column arrangement facilitates metrics computation.

Doing the same for the matched filter case, we get

t

dr:fr(r) v (T—t+7)dr

0

r

5 (0= [r(e) (1=
Y, (t)zj(?r(r) h, (t—z') dz‘zj(?r(r) v, (T—t—f—z') dr (6.23)

After samplingat t =T , (6.23) will become
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rl:yl(T):‘:fr(r) v (c) dr=ANT 4+, nlzjn(t) v (1) di
@:yz(r):zr(f) v, (z) dr=n, . nzzzn(t) vt di  r=[rin]  (624)

So the outputs, we obtain from correlator and matched filter are the same. For the case of matched
filter demodulator, it is instructive to graphically illustrate the convolution operation carried out in

b (t) and y, (t) of (6.23) for the signal parts. For the upper and lower branches of Fig. 6.7 a, this is

respectively done in Figs. 6.8 and 6.9.

v,(t) v (-t) v (T-t) v, (T-t+7)

A A A A

N2/ T

0 71/2 T/2 /2 T t-T  t-T/2

a) Orientation of matched filter (MF) v, (t) for convolution operation in Fig. 6.7b

1\81 (T) N
Sample area of overlap = AV 2
when T/2<t<T -
0 ;1 T/2 T
T/2<t<T v (T-t+7)
oo 1“ i T<t<3T/2
v
£<0 N - t>3T/2
> T
/ / Y, (t) t = T < Sampling instance
a
t-T  t-7/2 ANT
T/2
0 3T/2 .

b) Output from matched filter (MF) y, (t) via convolution

Fig. 6. 8 Graphical illustration of the convolution operation implemented in the upper matched filter
of Fig. 6.7b.
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v, (t) w.(T-t) v (T-t+7)
2 - 2
[ l//z( t) A 2 a
2/ T N2/ T
t 0
:t - ;t 0; T
0 T/2 T T -TI2 0 71/2 t-T/2 t
a) Orientation of matched filter (MF) v, (t)for convolution operation in Fig. 6.7b
A S ()
1
Sample area of overlap — AV 2
when0<t<T/2 —
0 [ TI2 -
0<t<T/2 v (T-t+7) "
=0 :L,,z TI2<t<T
Y v
t<0 —> - t>T
> z-
e () =72
t-T/2 t A A\/ T
Sampling instance
s
0 T
> I

b) Output from matched filter (MF) y, (t) via convolution

Fig. 6. 9 Graphical illustration of the convolution operation implemented in the lower matched filter

of Fig. 6.7b.

Now we compute correlation metrics values by inserting s, ---S, into C( r, sm). From (6.8) and

(6.22), we have
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Ax/?#—n1
2

A\/7+n

m=1,C(r,s)=2s-r[s =2[4T, 0| — AT = AT +24nNT

m=2,C(r,s,)=2s,r—s,[ =2[0, A\/_] — AT = 24n T — 4T

A\/_+n

m=3, C(r,s,)=2s, 1[5 =2[-4T, 0] AT =-34T —24nT

Ax/?—l—nl

m=4,C(r,s,)=2s,r—[s,] =2[0, - 4JT| — AT =—24nNT — 4T (6.25)
n

2

It is clear from (6.25) that in the absence of noise i.e. n, =n, =0, C( r, s]) becomes the largest in
the set of C( r, sm), m=1---4. Under such circumstances, the detector correctly decides that

S, (t) was transmitted. In the presence of noise, to arrive at a correct decision, it must be that
C(r,s,)>C(r,s,),C(r,s)>C(r,s,),C(r,s)>C(r,s,) (6.26)
These three conditions correspond to

C(r,8,)>C(r,s,) : AT +24AnNT >24nT — LT — ANT +n, > n,
C(r,s,)>C(r,s,) : 4T +24nNT > 34T —2AnNT — ANT > —n,
C(r,s)>C(r,s,) : AT +24nNT > =24nNT — £T — ANT +n,>-n,  (6.27)

~—

7]

~—

From (6.24) and Fig. 6.6, we deduce that if s, (t) was transmitted and gets mixed with noise, then at

receiver constellation diagram will look like the following

v,(t)
A
r ~"
P 1
// n2: I’2
~ .
S SS— el ... 1 .
_——— > v, (t)
51 n1
r1 ‘

Fig. 6. 10 Constellation diagram at receiver if s, (t) was transmitted.
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The three conditions in (6.27) individually define the regions shown in Fig. 6.11.

20 20 vt)

A A A

Region for AVT + n, >-n,

/4
L \ " (1)
= Vy(t) -y, (t) ‘ -

| Region for AVT > - n,

AN

Region for] AT+ n, >n,

o

Fig. 6. 11 Regions for conditions in (6.27).

Since conditions in (6.27) are connected by AND relation, then the intersection of the three regions

of Fig. 6.11 becomes

 v(t)

Intersection or correct
decision region
for s, in 4 PSK

Fig. 6. 12 Intersection of correct decision region for conditions in (6.27).

With the view in Fig. 6.12, we are now in a position to estimate the probability of error for 4 PSK or M

ary PSK in general. For simplicity, here we choose to find the probability of correct detection P and

use it to find the probability of error P from the following relation
P=1-P (6.28)

The conditions in (6.27) may be written in a different way, taking into account Fig. 6. 12, that is
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1

——< tan

7Z'
, n>—\e

n—i—\/—

(6.29)

where we have used the alternative definition of &, = A’T . The first inequality in (6.29) is a

combination of first and third conditions from (6.27), while the second inequality of (6.29) is merely
the second condition from (6.27) expressed in a different manner. Writing (6.29) purely in terms of

n, and n,, we get

(- Jan| F| < < B Y| Z| L

So we can utilize the noise pdf definition given in (5.6) and set P as follows

(m+e ) tan %]

1 7 n’ 1 n’
P = : f exp[——l] dn _ f exp[——z] dn
(V)" N TGN L N

Note that in the general case of M ary PSK, (6.31) simply becomes

Jﬁ

N . (M@m[ﬁ] .
‘ﬁ [ ] N / exp[_V]dnz

(7N)" ., i on| 2

The evaluation of P, for the cases of M =2 and general M are given below

M=2,P=0 26, ,SNR, =% SNR,=—2 =%
N, "N, log,(M)N, N,
AnyM , P, = “SNR) [exp(—z* +22SNR*) erf |z tan |-~
y g ( S){eXp( z* +2z8NR?*) er zan{M]

Q(x):(2;>05zexp[—%z] i | cp(x):#lexp _%] -
)

O(x)+®@(x)=1, ®(x)=0(—x) , erf(x)+erfec(x)=1
2 2 7

erf (x) = Osfexp(—zz>dz , erfe(x)= Osfexp(—zz)dz
s i)

X

O(x)=0.5erfc(x/2°°)=0.5—0.5erf (x/2")
@ (x)=1-erfec(x/2°°)=0.5—0.5erf (x/2")

dz

(6.30)

(6.31)

(6.32)

(6.33)

As seen from (6.33), it is possible to evaluate P analytically only in the case of M =2, for M > 2,

numeric evaluation is required. <D(x) and Q(x) are known as error function and complimentary

error function respectively. Their definitions are slightly different in Matlab denoted as
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erf (x) and erfc(x). The equivalences are given on the last but two lines of (6.33). SNR is the signal
to noise ratio. As given in (6.33), it is signal energy divided by noise spectral density, sometimes it is
taken as signal power divided by noise power. When signal part refers to symbol energy, we put the
subscript s, but if it’s the energy in the binary waveform, then we use the subscript b.

Finally we want to point out that the P and P derivations made above for the case of s, actually

represents the general case of any s, and the total average P and P, since

P (Average) = P(s, being sent) P(r falling in correct decision of s, )

+ P(s, being sent) P(r falling in correct decision of s, )

P( being sent ) P(r falling in correct decision of s, )
r

=P ( falling in correct decision of s |glven s, was sent from transmitter ) (6.34)

The last line in (6.34) is due to the fact that
P(s, being sent) = P(s, being sent)=---= P(s, being sent)= ﬁ (6.35)

Exercise 6.1 : By using the signal set given in Fig. 6.5 (t)SZ (t) , repeat the steps of Example 6.2.

Exercise 6.2 : On the course webpage, there is the MATLAB code MallPeMdI_2012.m to evaluate
theoretical and experimental P, for ASK, PSK, rectangular QAM using the model file modulators and
demodulators called Allmodd and AllDmodd together with the associated m files of PeMaryPSK.m
and quade.m. For the theoretical formulation, for PSK for instance, we use the second line of (6.30).
To arrive at experimental P, we simply transmit a number of symbols of the related modulation
type, then add noise to these symbols in the defined SNR ratio, then perform demodulation. In the

end, the following ratio is calculated to get experimental P,

(experimental) P — Number of symbols in error (6.36)
°  Total number of symbols transmitted (r)

Here care must be taken to send sufficient number of symbols so we can represent the small P,

values properly. If this is not done, fluctuations occur on probability of error curves and small P

values will be absent from the graph. Usually the golden rule is

n>10/P (6.37)

HTE Eyltl 2012 Sayfa 41



By using the MATLAB code and the model files, find the P, curves at M =2, 4, 8, 32, 64, 128 for
ASK, PSK, QAM. Compare your results with Figs. 7.55, 7.57 and 7.62 of Proakis 2002. Make comments
on the dependency of P on M and modulation type.

Exercise 6.3 : By using the analysis in Example 6.2, find by hand derivation, P. for the two PSK

constellations of M = 2 . Explain the difference between the two cases.

v,(t)

|sz| = ANT ‘

Fig. 6.13 Orthogonal PSK constellation of M = 2 for Exercise 6.2.

v,(t)

Fig. 6.13 Antipodal PSK constellation of M = 2 for Exercise 6.2.

The above text is based on

1) John G. Proakis, Masoud Salehi, “Communication Systems Engineering” 2" Ed. 2002, ISBN :
0-13-061793-8.
2) My own lecture notes.
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